Skip to main content

Logistic Regression

Logistic regression is a statistical technique used for binary classification problems. It is commonly used when the dependent variable, or the target variable, is binary or categorical in nature, and the goal is to predict the probability of an instance belonging to a particular class.

Unlike linear regression, which predicts continuous numerical values, logistic regression models the relationship between the input features and the probability of the target variable belonging to a specific class. The predicted probability is then mapped to a binary outcome using a threshold value.

Method: POST Authorization: API Key
https://engine.raccoon-ai.io/api/v1/ml/regression/logr

Authorization

TypeKeyValue
API KeyX-Api-Keyrae_######

Request Body

SectionKeyData TypeRequiredDescription
traindatajsontrueData that use to train the model
featureslisttrueInput features (X)
targetslisttrueOutput targets (y)
configjsonfalseTrain configurations
predictdatajsontrueData that need to predicted by the trained model
configjsonfalsePredict configurations

Types

{
"train" : {
"data" : <json_data>,
"features": <list>,
"targets" : <list>,
"config" : {
"std_scale": <boolean>,
"encoder" : <"onehot" | "label" | "drop">,
"val_size" : <float>
}
},
"predict": {
"data": <json_data>,
"config": {
"include_inputs": <boolean>,
"round": <int>
}
}
}

Sample

{
"train": {
"data": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7,
"2": 153441.51,
"3": 144372.41,
"4": 142107.34,
"5": 131876.9,
"6": 134615.46,
"7": 130298.13,
"8": 120542.52,
"9": 123334.88
},
"Administration": {
"0": 136897.8,
"1": 151377.59,
"2": 101145.55,
"3": 118671.85,
"4": 91391.77,
"5": 99814.71,
"6": 147198.87,
"7": 145530.06,
"8": 148718.95,
"9": 108679.17
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53,
"2": 407934.54,
"3": 383199.62,
"4": 366168.42,
"5": 362861.36,
"6": 127716.82,
"7": 323876.68,
"8": 311613.29,
"9": 304981.62
},
"State": {
"0": "New York",
"1": "California",
"2": "Florida",
"3": "New York",
"4": "Florida",
"5": "New York",
"6": "California",
"7": "Florida",
"8": "New York",
"9": "California"
},
"Profit": {
"0": 192261.83,
"1": 191792.06,
"2": 191050.39,
"3": 182901.99,
"4": 166187.94,
"5": 156991.12,
"6": 156122.51,
"7": 155752.6,
"8": 152211.77,
"9": 149759.96
}
},
"features": ["R&D Spend", "Administration", "Marketing Spend", "State"],
"targets": ["Profit"],
"config": {
"std_scale": true,
"encoder": "onehot"
}
},
"predict": {
"data": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7
},
"Administration": {
"0": 136897.8,
"1": 151377.59
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53
},
"State": {
"0": "New York",
"1": "California"
}
},
"config": {
"include_inputs": true,
"round": 2
}
}
}

Reponse Body

KeyData TypeDescription
successbooleanIndicate the success of the request
msgstringMessage indicators
errorstringError information, only set if success is false
resultjsonResult, only set if success is true
scorejsonr2_scores of the training and testing phases, only set if success is true
generated_tsfloatGenerated timestamp

Types

{
"success": <boolean>,
"msg": <string>,
"error": <string>,
"result": <json>,
"score": {
"train": <float>,
"test": <float>
},
"generated_ts": <timestamp>
}

Sample

{
"success": true,
"msg": "Model trained and predicted successfully",
"error": null,
"result": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7
},
"Administration": {
"0": 136897.8,
"1": 151377.59
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53
},
"State": {
"0": "New York",
"1": "California"
},
"Profit": {
"0": 190209.72,
"1": 186863.18
}
},
"score": {
"train": 0.942446542689397,
"test": 0.9649618042060305
},
"saved_in": null,
"generated_ts": 1685439220.425382
}